Archimedes' principle
Archimedes' principle is named after Archimedes of Syracuse, who first discovered this law in 212 B.C.[2] His treatise, On floating bodies, proposition 5 states:Any floating object displaces its own weight of fluid.For more general objects, floating and sunken, and in gases as well as liquids (i.e. a fluid), Archimedes' principle may be stated thus in terms of forces:
Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object.with the clarifications that for a sunken object the volume of displaced fluid is the volume of the object, and for a floating object on a liquid, the weight of the displaced liquid is the weight of the object.
— Archimedes of Syracuse
More tersely: Buoyancy = weight of displaced fluid.
Archimedes' principle does not consider the surface tension (capillarity) acting on the body.[4]
The weight of the displaced fluid is directly proportional to the volume of the displaced fluid (if the surrounding fluid is of uniform density). In simple terms, the principle states that the buoyancy force on an object is going to be equal to the weight of the fluid displaced by the object, or the density of the fluid multiplied by the submerged volume times the gravitational constant, g. Thus, among completely submerged objects with equal masses, objects with greater volume have greater buoyancy.
Suppose a rock's weight is measured as 10 newtons when suspended by a string in a vacuum with gravity acting upon it. Suppose that when the rock is lowered into water, it displaces water of weight 3 newtons. The force it then exerts on the string from which it hangs would be 10 newtons minus the 3 newtons of buoyancy force: 10 − 3 = 7 newtons. Buoyancy reduces the apparent weight of objects that have sunk completely to the sea floor. It is generally easier to lift an object up through the water than it is to pull it out of the water.
Assuming Archimedes' principle to be reformulated as follows,
Example: If you drop wood into water buoyancy will keep it afloat.
Example: A helium balloon in a moving car. In increasing speed or driving a curve, the air moves in the opposite direction of the car's acceleration. The balloon however, is pushed due to buoyancy "out of the way" by the air, and will actually drift in the same direction as the car's acceleration.
[edit] Forces and equilibrium
This is the equation to calculate the pressure inside a fluid in equilibrium. The corresponding equilibrium equation is:The buoyancy force exerted on a body can now be calculated easily, since the internal pressure of the fluid is known. The force exerted on the body can be calculated by integrating the stress tensor over the surface of the body which is in contact with the fluid:
The magnitude of buoyancy force may be appreciated a bit more from the following argument. Consider any object of arbitrary shape and volume V surrounded by a liquid. The force the liquid exerts on an object within the liquid is equal to the weight of the liquid with a volume equal to that of the object. This force is applied in a direction opposite to gravitational force, that is of magnitude:
If this volume of liquid is replaced by a solid body of exactly the same shape, the force the liquid exerts on it must be exactly the same as above. In other words the "buoyancy force" on a submerged body is directed in the opposite direction to gravity and is equal in magnitude to
In order for Archimedes' principle to be used alone, the object in question must be in equilibrium (the sum of the forces on the object must be zero), therefore;
- (Note: If the fluid in question is seawater, it will not have the same density (ρ) at every location. For this reason, a ship may display a Plimsoll line.)
If the object would otherwise float, the tension to restrain it fully submerged is:
Another possible formula for calculating buoyancy of an object is by finding the apparent weight of that particular object in the air (calculated in Newtons), and apparent weight of that object in the water (in Newtons). To find the force of buoyancy acting on the object when in air, using this particular information, this formula applies:
- 'Buoyancy force = weight of object in empty space − weight of object immersed in fluid'
Air's density is very small compared to most solids and liquids. For this reason, the weight of an object in air is approximately the same as its true weight in a vacuum. The buoyancy of air is neglected for most objects during a measurement in air because the error is usually insignificant (typically less than 0.1% except for objects of very low average density such as a balloon or light foam).
[edit] Stability
A floating object is stable if it tends to restore itself to an equilibrium position after a small displacement. For example, floating objects will generally have vertical stability, as if the object is pushed down slightly, this will create a greater buoyancy force, which, unbalanced by the weight force, will push the object back up.Rotational stability is of great importance to floating vessels. Given a small angular displacement, the vessel may return to its original position (stable), move away from its original position (unstable), or remain where it is (neutral).
Rotational stability depends on the relative lines of action of forces on an object. The upward buoyancy force on an object acts through the center of buoyancy, being the centroid of the displaced volume of fluid. The weight force on the object acts through its center of gravity. A buoyant object will be stable if the center of gravity is beneath the center of buoyancy because any angular displacement will then produce a 'righting moment'.
[edit] Compressible fluids and objects
The atmosphere's density depends upon altitude. As an airship rises in the atmosphere, its buoyancy decreases as the density of the surrounding air decreases. In contrast, as a submarine expels water from its buoyancy tanks, it rises because its volume is constant (the volume of water it displaces if it is fully submerged) while its mass is decreased.[edit] Compressible objects
As a floating object rises or falls, the forces external to it change and, as all objects are compressible to some extent or another, so does the object's volume. Buoyancy depends on volume and so an object's buoyancy reduces if it is compressed and increases if it expands.If an object at equilibrium has a compressibility less than that of the surrounding fluid, the object's equilibrium is stable and it remains at rest. If, however, its compressibility is greater, its equilibrium is then unstable, and it rises and expands on the slightest upward perturbation, or falls and compresses on the slightest downward perturbation.
Submarines rise and dive by filling large tanks with seawater. To dive, the tanks are opened to allow air to exhaust out the top of the tanks, while the water flows in from the bottom. Once the weight has been balanced so the overall density of the submarine is equal to the water around it, it has neutral buoyancy and will remain at that depth.
The height of a balloon tends to be stable. As a balloon rises it tends to increase in volume with reducing atmospheric pressure, but the balloon's cargo does not expand. The average density of the balloon decreases less, therefore, than that of the surrounding air. The balloon's buoyancy decreases because the weight of the displaced air is reduced. A rising balloon tends to stop rising. Similarly, a sinking
Density
If the weight of an object is less than the weight of the displaced fluid when fully submerged, then the object has an average density that is less than the fluid and when fully submerged will experience a buoyancy force greater than its own weight. If the fluid has a surface, such as water in a lake or the sea, the object will float and settle at a level where it displaces the same weight of fluid as the weight of the object. If the object is immersed in the fluid, such as a submerged submarine or air in a balloon, it will tend to rise. If the object has exactly the same density as the fluid, then its buoyancy equals its weight. It will remain submerged in the fluid, but it will neither sink nor float, although a disturbance in either direction will cause it to drift away from its position. An object with a higher average density than the fluid will never experience more buoyancy than weight and it will sink. A ship will float even though it may be made of steel (which is much denser than water), because it encloses a volume of air (which is much less dense than water), and the resulting shape has an average density less than that of the water.[edit] Beyond Archimedes' principle
Archimedes' principle is a fluid statics concept. In its simple form, it applies when the object is not accelerating relative to the fluid. To examine the case when the object is accelerated by buoyancy and gravity, the fact that the displaced fluid itself has inertia as well must be considered.[5]This means that both the buoyant object and a parcel of fluid (equal in volume to the object) will experience the same magnitude of buoyancy force because of Newton's third law, and will experience the same acceleration, but in opposite directions, since the total volume of the system is unchanged. In each case, the difference between magnitudes of the buoyancy force and the force of gravity is the net force, and when divided by the relevant mass, it will yield the respective acceleration through Newton's second law. All acceleration measures are relative to the reference frame of the undisturbed background fluid.
[edit] Atwood's machine analogy
The system can be understood by analogy with a suitable modification of Atwood's machine, to represent the mechanical coupling of the displaced fluid and the buoyant object, as shown in the diagram right.- The solid object is represented by the gray object
- The fluid being displaced is represented by dark blue object
- Undisturbed background fluid is analogous to the inextensible massless cord
- The force of buoyancy is analogous to the tension in the cord
- The solid floor of the body of fluid is analogous to the pulley, and reverses the direction of the buoyancy force, such that both the solid object and the displaced fluid experience their buoyancy force upward.
[edit] Results
It is important to note that this simplification of the situation completely ignores drag and viscosity, both of which come in to play to a greater extent as speed increases, when considering the dynamics of buoyant objects. The following simple formulation makes the assumption of slow speeds such that drag and viscosity are not significant. It is difficult to carry out such an experiment in practice with speeds close to zero, but if measurements of acceleration are made as quickly as possible after release from rest, the equations below give a good approximation to the acceleration and the buoyancy force.A system consists of a well-sealed object of mass m and volume V which is fully submerged in a uniform fluid body of density ρf and in an environment of a uniform gravitational field g. Under the forces of buoyancy and gravity alone, the "dynamic buoyancy force" B acting on the object and its upward acceleration a are given by:
- Buoyancy force
- Upward acceleration
Should other forces come in to play in a different situation (such as spring forces, human forces, thrust, drag, or lift), it is necessary for the solver of problem to re-consider the construction of Newton's second law and the mechanical coupling conditions for both bodies, now involving these other forces. In many situations turbulence will introduce other forces that are much more complex to calculate.
In the case of neutral buoyancy, m is equal to ρfV. Thus B reduces to mg and the acceleration is zero. If the object is much denser than the fluid, then B approaches zero and the object's upward acceleration is approximately −g, i.e. it is accelerated downward due to gravity as if the fluid were not present. As an example, a pellet of osmium falling through air will initially accelerate at 99.98% of g downward, though this will reduce as speed increases. Similarly, if the fluid is much denser than the object, then B approaches 2mg and the upward acceleration is approximately g. As an example, a typical Styrofoam ball in a tub of Mercury will initially accelerate upward at about 98.5% g.
Walang komento:
Mag-post ng isang Komento